The Batman Equation

Apparently, the Batman Equation first appeared at [H]ard|OCP – there’s a nice breakdown of it at the Geometry section of MathUnderflow – also, check out the equations at PasteBin.

If you’d like to graph the equations, here the are:

( (x/7)^2 sqrt(abs(abs(x)-3)/(abs(x)-3)) + (y/3)^2 sqrt(abs(y+ 3/7 sqrt(33))/(y+ 3/7 sqrt(33))) - 1 )

( abs(x/2)-(3 sqrt(33)-7) x^2/112 -3 +sqrt(1-(abs((abs(x)-2))-1)^2)-y)

(9 sqrt(abs((abs(x)-1)(abs(x)-.75))/((1-abs(x))(abs(x)-.75)))- 8 abs(x)-y)

(3 abs(x) + .75 sqrt(abs((abs(x)-.75)(abs(x)-.5))/((.75-abs(x))(abs(x)-.5)))-y)

(2.25 sqrt(abs((abs(x)-.5)(abs(x)-.5))/((.5-abs(x))(abs(x)-.5)))-y)

(6 sqrt(10)/7 + (1.5-.5 abs(x)) sqrt(abs(abs(x)-1)/(abs(x)-1)) - 6 sqrt(10)/14 sqrt(4-(abs(x)-1)^2) -y) =0
ard|OCP”]The Batman Equation via [H]ard|OCP

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s